
First Order Systems

A comprehensive introduction
to the dynamics of

Valentin Sagrario
Jan 2020

for game devs
(and other curious people)

@val_sagrario

First Order System

*Systems considered in this presentation are assumed linear and time invariant (LTI)

System
Input
x(t)

Output
y(t)

What’s a First Order system?

Any physical system that can be
modeled by a 1st order differential equation

Many real system can be modeled and
approximated by this equation.

Cooling cup of coffee

Braking automobile

Camera flash discharge

C

R

vi vo

m

b
x

T

Ta

No matter the nature of the system,
the equation has always the same structure

Term that depends on the input

Terms that depends on the output

Higher derivative order is 1

Time Constant (Greek letter tau)

Time response analysis

System
Input Output

System
Input Output

A known reference input is injected

System
Input Output

The output waveform is measured

???
Input Output

We don’t care about
what’s inside the system

?
Input (t) Output (t)

We care about
how the output changes with time

for a given input signal

A system can be characterized by its
response to the step function.

t0

1

Step function

u(t)

u(t)

t0

1

Step function

The input has been
maintained with the
value 0 for a very
long time

u(t)

t0

1

Step function

At t=0, the input is taken to 1
instantaneously and held

1st Order System Step Response

The solution to this equation when x(t)=1 for t ≥ 0
and null initial conditions is:

The step response of a 1st order system
is always an exponential curve

that approaches its final value as t increases.

t0

k

y(t)

How fast the system reaches its final value?

How fast the system reaches its final value?

Depends solely on the system Time Constant 𝜏

t0

k

First Order System
Step Response

As 𝜏 increases,
the system ‘reacts’ slower.

y(t)

How slower exactly?

t0

k

𝜏

slo
pe

 =
 k/
𝜏

y(t)

Time Constant

The time it takes the system to reach
63.2% of the final value

𝜏

t0

k

0.632 k

𝜏

y(t)

Five Time Constants

The time at which the output reaches
99.3% of the final value.

5𝜏

t0

k

5𝜏

y(t)

In practice, it’s considered that the output
has reached its final value.

5𝜏 = 99.3%

System Decay

1st Order
System

What’s the time
response when the
input is taken to 0?

1 - u(t)

t0

1

Input: Inverse Step

t0

1

Input: Inverse Step

The input has been
maintained with the
value 1 for a very
long time

1 - u(t)

t0

1

Input: Inverse Step

At t=0,
the input is taken to 0
instantaneously

1 - u(t)

1st Order System Inverse Step Response

The solution to this equation when x(t)=0 for t ≥ 0
and initial condition y(t)=k for t < 0 is:

t0

k

y(t)

If the input is taken to zero
instantaneously, the system
still takes some time to release
the accumulated energy.

It does it following an
exponential decay curve.

Discrete time approximation
(How to generate these curves in software)

t0

y[n-1]

y[n]

Discrete time approximation

(Sampling period /
simulation step)

y(t)

t0

y[n-1]

y[n]

Discrete time approximationy(t)

becomes

Solving:

a

Renaming:

1 - aa

Renaming:

This simple equation can approximate
the output of any 1st order system.

Depends on
Current input

Inertia from
Previous output

NOTE
Keep in mind all graphs presented are qualitative with

exaggerated distances for clarity.

n

y[n]

The continuous analog version of
the curve is overlaid for clarity
but an actual digital signal is just
a bunch of ordered discrete
values.

Interpretation as a
linear interpolation

y(a) = aB + (1 - a)A

Linear Interpolation (Lerp)

A B
y(a)

y(a) = aB + (1 - a)A

If a = 0 then y = AA B
y(0)

A B
y(1)

If a = 1 then y = B

A B
y(a)

Linear Interpolation (Lerp)

The 1st Order step response
looks like a Linear Interpolation

The 1st Order step response
looks like a Linear Interpolation

Why?

At instant n,
y is actually a linear interpolation

between previous output y and current input x.

y[n] is a Lerp between y[n-1] and x[n]

t0

k

y[n-1]

x[n]

y[n] = (1 - a) y[n-1] + a x[n]

y[n]

t0

k

y[n-1]

x[n]

y[n] = (1 - a) y[n-1] + a x[n]

y[n]

If is constant

t0

k

y[n] = (1 - a) y[n-1] + a x[n]

The proportion between blue
and orange segments is always
the same across the curve.
(because a doesn’t change with time)

1-a

a

1

(constant)

Normalized
proportions

Which totally makes sense since:

The grow rate of an exponential function is directly
proportional to the value of the function.

What if If is not constant?

On real-time digital systems, the elapsed time between
simulation steps or frames might not be constant!

The equation still approximates
an exponential curve!

The ΔT factor compensates small variations.

(given ΔT varies reasonably)

Approximation accuracy

Then a can be approximated as

Further simplification:

This approximation can only be used if ΔT is
at least 10 times smaller than 𝜏.

Some examples

𝜏 = 100ms, ΔT ≃ 16ms

Ideal curve

𝜏 = 16ms, ΔT ≃ 16ms

Ideal curve

Overshot

𝜏 = 10ms, ΔT ≃ 16ms

Ideal curveOvershot
+

oscillation

NOTE

In real physical systems, a 1st order system will
never produce an overshot or oscillation. Only 2nd

or higher order systems can produce overshots.

This is just a side effect of a discrete time
approximation going too off.

Interpolation Implementation

Since Linear Interpolation is such a basic operation,
the first order time response can be implemented

virtually anywhere using the proper built-in function.

Since Linear Interpolation is such a basic operation,
the first order time response can be implemented

virtually anywhere using the proper built-in function.

GLSL:

HLSL:

Unreal:

Unity:

y = mix(x, y, a);

y = lerp(x, y, a);

y = FMath::Lerp(x, y, a);

y = Mathf.Lerp(x, y, a);

Some examples:

Besides a linear interpolation implementation, most
environments provide more specific and handy

methods to achieve this behavior.

Besides a linear interpolation implementation, most
environments provide more specific and handy

methods to achieve this behavior.

Example:Unreal’s InterpTo

FMath::FInterpTo

/** Interpolate float from Current to Target. Scaled by distance
to Target, so it has a strong start speed and ease out. */

FMath::FInterpTo

/** Interpolate float from Current to Target. Scaled by distance
to Target, so it has a strong start speed and ease out. */

static CORE_API float FInterpTo(

 float Current,

 float Target,

 float DeltaTime,

 float InterpSpeed
);

static CORE_API float FInterpTo(

 float Current,

 float Target,

 float DeltaTime,

 float InterpSpeed
);

What is exactly this?

y[n-1]

x[n]

ΔT

static CORE_API float FInterpTo(

 float Current,

 float Target,

 float DeltaTime,

 float InterpSpeed
);

What is exactly this?

y[n-1]

x[n]

ΔT

t0

Target

2s

EXAMPLE:
We want the output to reach its target value in 2 seconds.

Y

t0

Target

2s

EXAMPLE:
We want the output to reach its target value in 2 seconds.

This is 5𝜏

Y

t0

Target

2s

EXAMPLE:
We want the output to reach its target value in 2 seconds.

This is 5𝜏

5𝜏 = 2s
𝜏 = 0.4s

Y

If running at about 60fps,

ΔT is 25 times smaller than 𝜏

Then, a can be roughly approximated to ΔT/𝜏

This means that InterpSpeed = 1/𝜏 = 2.5

void AMyActor::Tick(float DeltaTime)
{
 // This will make Y to go from its current value
 // to Target in about 2 seconds.
 Y = FMath::FInterpTo(Y, Target, DeltaTime, 2.5f);
}

● Simple control of vehicles acceleration / deceleration.
● Sliding door animation interpolation.
● Camera animation interpolation.
● UI elements animation interpolation.

Examples of possible uses in games

1st order system
as a digital filter

What if the input is not a step,
but an arbitrary time changing signal?

Effect on an arbitrary input signal

Input:

Effect on an arbitrary input signal

Output:

The system smooths out the signal

Effect on an arbitrary input signal

Output:

As 𝜏 increases, the system reacts slower,
filtering out more signal.

Input
Output with 𝜏 = 𝜏1
Output with 𝜏 = 𝜏2

𝜏2 > 𝜏1

Effect on an arbitrary input signal

In Digital Signal Processing,
this is called a Low Pass Filter

In Digital Signal Processing,
this is called a Low Pass Filter

Because it let low frequencies pass, while blocking
the high frequencies of the signal.

● Smooth user input
● Smooth camera transitions
● Smooth “jumpy” incoming network data.
● Temporally blend frames in shaders.

Examples of possible uses in games

Conclusion

Conclusion

The 1st order system discrete time approximation formula is
a very powerful tool that allows extremely simple yet organic
simulations without the need to physically model a system.

Conclusion

All you need to remember is this simple formula:

Conclusion

All you need to remember is this simple formula:

Conclusion

All you need to remember is this simple formula:

Also, beware of the parameter a magnitude in relation to the
simulation step of your system.

Appendix A

Typical 1st order systems time constants

𝜏 for typical 1st order systems

Appendix B

Exponential decay derivation

0
Nulling x(t):

Rearranging:

x(t) is 0 for t ≥ 0

1st order general
equation:

Integrating:

Solving y(t):

being C the
integration constant

Defining k = eC, as the value the system had in steady state:

Appendix C

Half Life

Half Life (t½)

The time required by a decaying quantity to
reduce to half its initial value

t0

k

0.5k

Half life: t½=0.693𝜏

𝜏

In some fields (like nuclear physics),
the exponential decay equation is defined in terms of

the inverse of the Time Constant 𝜏 :

The Decay Constant .

