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First Order System



*Systems considered in this presentation are assumed linear and time invariant (LTI)

System
Input
x(t)

Output
y(t)

What’s a First Order system?



Any physical system that can be
modeled by a 1st order differential equation



Many real system can be modeled and
approximated by this equation.



Cooling cup of coffee

Braking automobile

Camera flash discharge
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No matter the nature of the system,
the equation has always the same structure



Term that depends on the input



Terms that depends on the output



Higher derivative order is 1



Time Constant (Greek letter tau)





Time response analysis



System
Input Output



System
Input Output

A known reference input is injected



System
Input Output

The output waveform is measured



???
Input Output

We don’t care about
what’s inside the system



?
Input (t) Output (t)

We care about
how the output changes with time

for a given input signal



A system can be characterized by its
response to the step function.
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Step function 

u(t)



u(t)

t0

1

Step function 

The input has been 
maintained with the 
value 0 for a very 
long time



u(t)

t0

1

Step function 

At t=0, the input is taken to 1 
instantaneously and held



1st Order System Step Response

The solution to this equation when x(t)=1 for t ≥ 0
and null initial conditions is:



The step response of a 1st order system
is always an exponential curve

that approaches its final value as t increases.
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How fast the system reaches its final value?



How fast the system reaches its final value?

Depends solely on the system Time Constant 𝜏
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First Order System
Step Response

As 𝜏 increases,
the system ‘reacts’ slower. 

y(t)



How slower exactly?
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Time Constant

The time it takes the system to reach
63.2% of the final value

𝜏
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Five Time Constants

The time at which the output reaches
99.3% of the final value.

5𝜏
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5𝜏
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In practice, it’s considered that the output
has reached its final value.

5𝜏 = 99.3%



System Decay



1st Order
System

What’s the time 
response when the 
input is taken to 0?



1 - u(t)
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Input: Inverse Step
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Input: Inverse Step

The input has been 
maintained with the 
value 1 for a very 
long time

1 - u(t)
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Input: Inverse Step

At t=0,
the input is taken to 0 
instantaneously

1 - u(t)



1st Order System Inverse Step Response

The solution to this equation when x(t)=0 for t ≥ 0
and initial condition y(t)=k for t < 0 is:
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y(t)



If the input is taken to zero 
instantaneously, the system 
still takes some time to release 
the accumulated energy.

It does it following an 
exponential decay curve.



Discrete time approximation
(How to generate these curves in software)



t0

y[n-1]

y[n]

Discrete time approximation

(Sampling period / 
simulation step)

y(t)



t0

y[n-1]

y[n]

Discrete time approximationy(t)



becomes



Solving:



a

Renaming:



1 - aa

Renaming:





This simple equation can approximate
the output of any 1st order system.



Depends on
Current input

Inertia from
Previous output





NOTE
Keep in mind all graphs presented are qualitative with 

exaggerated distances for clarity.

n

y[n]

The continuous analog version of 
the curve is overlaid for clarity 
but an actual digital signal is just 
a bunch of ordered discrete 
values.



Interpretation as a
linear interpolation



y(a) = aB + (1 - a)A

Linear Interpolation (Lerp)

A B
y(a)



y(a) = aB + (1 - a)A

If a = 0  then  y = AA B
y(0)

A B
y(1)

If a = 1  then  y = B

A B
y(a)

Linear Interpolation (Lerp)



The 1st Order step response
looks like a Linear Interpolation



The 1st Order step response
looks like a Linear Interpolation

Why?



At instant n,
y is actually a linear interpolation

between previous output y and current input x.



y[n] is a Lerp between y[n-1] and x[n]
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y[n-1]

x[n]

y[n] = (1 - a) y[n-1] + a x[n]

y[n]
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y[n-1]

x[n]

y[n] = (1 - a) y[n-1] + a x[n]

y[n]



If          is constant



t0

k

y[n] = (1 - a) y[n-1] + a x[n]

The proportion between blue 
and orange segments is always 
the same across the curve.
(because a doesn’t change with time)

1-a

a

1

(constant)

Normalized 
proportions



Which totally makes sense since:

The grow rate of an exponential function is directly 
proportional to the value of the function.



What if If          is not constant?

On real-time digital systems, the elapsed time between 
simulation steps or frames might not be constant!



The equation still approximates
an exponential curve!

The ΔT factor compensates small variations.

(given ΔT varies reasonably)



Approximation accuracy



Then a can be approximated as

Further simplification:



This approximation can only be used if ΔT is
at least 10 times smaller than 𝜏.



Some examples



𝜏 = 100ms, ΔT ≃ 16ms    

Ideal curve



𝜏 = 16ms, ΔT ≃ 16ms    

Ideal curve

Overshot



𝜏 = 10ms, ΔT ≃ 16ms    

Ideal curveOvershot
+

oscillation



NOTE

In real physical systems, a 1st order system will 
never produce an overshot or oscillation. Only 2nd 

or higher order systems can produce overshots.

This is just a side effect of a discrete time 
approximation going too off.



Interpolation Implementation



Since Linear Interpolation is such a basic operation, 
the first order time response can be implemented 

virtually anywhere using the proper built-in function. 



Since Linear Interpolation is such a basic operation, 
the first order time response can be implemented 

virtually anywhere using the proper built-in function. 

GLSL:

HLSL:

Unreal: 

Unity:

y = mix(x, y, a);

y = lerp(x, y, a);

y = FMath::Lerp(x, y, a);

y = Mathf.Lerp(x, y, a);

Some examples:



Besides a linear interpolation implementation, most 
environments provide more specific and handy 

methods to achieve this behavior.



Besides a linear interpolation implementation, most 
environments provide more specific and handy 

methods to achieve this behavior.

Example:Unreal’s InterpTo



FMath::FInterpTo

/** Interpolate float from Current to Target. Scaled by distance 
to Target, so it has a strong start speed and ease out. */



FMath::FInterpTo

/** Interpolate float from Current to Target. Scaled by distance 
to Target, so it has a strong start speed and ease out. */



static CORE_API float FInterpTo(

    float Current,

    float Target,

    float DeltaTime,

    float InterpSpeed
);



static CORE_API float FInterpTo(

    float Current,

    float Target,

    float DeltaTime,

    float InterpSpeed
);

What is exactly this?

y[n-1]

x[n]

ΔT



static CORE_API float FInterpTo(

    float Current,

    float Target,

    float DeltaTime,

    float InterpSpeed
);

What is exactly this?

y[n-1]

x[n]

ΔT



t0

Target

2s

EXAMPLE:
We want the output to reach its target value in 2 seconds.

Y



t0

Target

2s

EXAMPLE:
We want the output to reach its target value in 2 seconds.

This is 5𝜏

Y



t0

Target

2s

EXAMPLE:
We want the output to reach its target value in 2 seconds.

This is 5𝜏

5𝜏 = 2s
𝜏 = 0.4s

Y



If running at about 60fps,

ΔT is 25 times smaller than 𝜏 

Then, a can be roughly approximated to ΔT/𝜏

This means that InterpSpeed = 1/𝜏 = 2.5



void AMyActor::Tick(float DeltaTime)  
{  
    // This will make Y to go from its current value
    // to Target in about 2 seconds.
    Y = FMath::FInterpTo(Y, Target, DeltaTime, 2.5f);
}



● Simple control of vehicles acceleration / deceleration.
● Sliding door animation interpolation.
● Camera animation interpolation.
● UI elements animation interpolation.

Examples of possible uses in games



1st order system
as a digital filter



What if the input is not a step,
but an arbitrary time changing signal?



Effect on an arbitrary input signal

Input:



Effect on an arbitrary input signal

Output:



The system smooths out the signal

Effect on an arbitrary input signal

Output:



As 𝜏 increases, the system reacts slower,
filtering out more signal.

Input
Output with 𝜏 = 𝜏1
Output with 𝜏 = 𝜏2 

𝜏2  > 𝜏1 

Effect on an arbitrary input signal



In Digital Signal Processing,
this is called a Low Pass Filter



In Digital Signal Processing,
this is called a Low Pass Filter

Because it let low frequencies pass, while blocking 
the high frequencies of the signal.



● Smooth user input
● Smooth camera transitions
● Smooth “jumpy” incoming network data.
● Temporally blend frames in shaders.

Examples of possible uses in games



Conclusion



Conclusion

The 1st order system discrete time approximation formula is 
a very powerful tool that allows extremely simple yet organic 
simulations without the need to physically model a system.



Conclusion

All you need to remember is this simple formula:



Conclusion

All you need to remember is this simple formula:



Conclusion

All you need to remember is this simple formula:

Also, beware of the parameter a magnitude in relation to the 
simulation step of your system.



Appendix A

Typical 1st order systems time constants



𝜏 for typical 1st order systems



Appendix B

Exponential decay derivation



0
Nulling x(t):

Rearranging:

x(t) is 0 for t ≥ 0

1st order general 
equation:



Integrating:

Solving y(t):

being C the 
integration constant

Defining k = eC, as the value the system had in steady state:



Appendix C

Half Life



Half Life (t½)

The time required by a decaying quantity to
reduce to half its initial value



t0

k

0.5k

Half life: t½=0.693𝜏

𝜏



In some fields (like nuclear physics),
the exponential decay equation is defined in terms of

the inverse of the Time Constant 𝜏 : 

The Decay Constant             . 


